25 research outputs found

    Quantifying DDS-cerberus Network Control Overhead

    Get PDF
    Securing distributed device communication is critical because the private industry and the military depend on these resources. One area that adversaries target is the middleware, which is the medium that connects different systems. This paper evaluates a novel security layer, DDS-Cerberus (DDS-C), that protects in-transit data and improves communication efficiency on data-first distribution systems. This research contributes a distributed robotics operating system testbed and designs a multifactorial performance-based experiment to evaluate DDS-C efficiency and security by assessing total packet traffic generated in a robotics network. The performance experiment follows a 2:1 publisher to subscriber node ratio, varying the number of subscribers and publisher nodes from three to eighteen. By categorizing the network traffic from these nodes into either data message, security, or discovery+ with Quality of Service (QoS) best effort and reliable, the mean security traffic from DDS-C has minimal impact to Data Distribution Service (DDS) operations compared to other network traffic. The results reveal that applying DDS-C to a representative distributed network robotics operating system network does not impact performance

    Distribution of DDS-cerberus Authenticated Facial Recognition Streams

    Get PDF
    Successful missions in the field often rely upon communication technologies for tactics and coordination. One middleware used in securing these communication channels is Data Distribution Service (DDS) which employs a publish-subscribe model. However, researchers have found several security vulnerabilities in DDS implementations. DDS-Cerberus (DDS-C) is a security layer implemented into DDS to mitigate impersonation attacks using Kerberos authentication and ticketing. Even with the addition of DDS-C, the real-time message sending of DDS also needs to be upheld. This paper extends our previous work to analyze DDS-C’s impact on performance in a use case implementation. The use case covers an artificial intelligence (AI) scenario that connects edge sensors across a commercial network. Specifically, it characterizes how DDS-C performs between unmanned aerial vehicles (UAV), the cloud, and video streams for facial recognition. The experiments send a set number of video frames over the network using DDS to be processed by AI and displayed on a screen. An evaluation of network traffic using DDS-C revealed that it was not statistically significant compared to DDS for the majority of the configuration runs. The results demonstrate that DDS-C provides security benefits without significantly hindering the overall performance

    Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology

    Get PDF
    ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo . Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4 + T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4 + T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease

    Concurrent Validity and Reliability of Average Heart Rate and Energy Expenditure of Identical Garmin Instinct Watches During Low Intensity Resistance Training

    Get PDF
    ABSTRACT Wearable technology and resistance training are two of the top five worldwide fitness trends for 2022 as determined by ACSM. Many devices, such as Garmin’s Instinct, have functions to track various physiological aspects during resistance training. However, to our knowledge, independent verification of the validity and reliability of these devices for estimating average heart rate (HR) and energy expenditure (EE) during resistance training are nonexistent. PURPOSE: To determine the concurrent validity and reliability of identical Garmin Instinct watches during resistance training. METHODS: Twenty subjects (n=10 female and male; age: 23.2±7.7 years; height: 169.7±11.1; weight: 76.3±15.7 kg) completed this study. Two Garmin Instinct watches were evaluated, along with the Polar H10 chest strap and Cosmed K5 portable metabolic unit as the criterion devices for average HR and EE, respectively. Subjects completed 4 circuits of 4 exercises (front squat, reverse lunge, push-ups, and shoulder press) using dumbbells at a light intensity with 1 set of 10 repetitions per exercise, 30 seconds rest between exercises, and 1-1.5 min. rest between circuits. Data were analyzed for validity (Mean Absolute Percent Error [MAPE] and Lin’s Concordance Coefficient [CCC]) and reliability (Coefficient of Variation [CV]), with predetermined thresholds of MAPE0.70, and CVRESULTS: Garmin Instinct 1 and Instinct 2 were significantly (

    Evaluation of Average and Maximum Heart Rate of Wrist-worn Wearable Technology Devices During Trail Running

    Get PDF
    It has been estimated that there are 20 million people who participate in trail running, and these numbers are expected to increase by 15% each year. Our laboratory group has conducted studies on the validity of wearable technology watches and heart rate (HR) during trail running. The previous generation devices were mostly inaccurate, and a limitation was that reliability was not measured. PURPOSE: To determine both validity and reliability in newer models of wearable devices during trail running. METHODS: Seventeen participants (F = 7) ran on the Thunderbird Gardens Lightning Switch trail in Cedar City, UT. Demographic characteristics: Age = 25 (9) years (mean [standard deviation]), ht = 168 (9) cm, mass = 72 (14) kg. Two Garmin Instincts and two Polar Vantage M2s were evaluated, along with the Polar H10 chest strap as the criterion measure. Participants ran out on the trail for 10-minutes, and then returned to the trailhead. Maximum HR and average HR were measured during the run. Data were analyzed for validity (Mean Absolute Percent Error [MAPE] and Lin’s Concordance [CCC]) and reliability (Coefficient of Variation [CV] and Intraclass Correlation Coefficient [ICC]). Predetermined thresholds were: MAPE0.70, CV0.70. RESULTS: The Garmin Instinct met the threshold for both reliability tests for average and maximum HR (see table). The Garmin Instinct and Polar Vantage met the threshold for both validity tests for maximum HR. CONCLUSION: In order for a device to be considered valid, it must meet the predetermined thresholds for both validity and reliability. These results indicate that only the Garmin Instinct is valid and reliable, but only for measuring maximum HR. This is challenging for those who wish to track their HR while trail running, because neither of the studied devices were valid and reliable for maximum and average HR

    Average Heart Rate and Energy Expenditure Validity of Garmin Vivoactive 3 and Fenix 6 Wrist Watches During Light Circuit Resistance Training

    Get PDF
    Our laboratory recently found wrist-worn wearable technology devices to be valid for measuring average heart rate (HR), but not valid for estimated energy expenditure (EE) compared to criterion devices, during steady state aerobic training (walking, running, biking). However, the validity of wrist-worn devices for HR and EE measures during resistance training is largely unknown. PURPOSE: The purpose of this study was to determine if two wrist-worn devices, Garmin Vivoactive 3 and Garmin Fenix 6 Pro, record valid measures of average HR and EE while performing circuit resistance training. METHODS: Twenty participants (n=10 female, n=10 male; age: 23.2 ± 7.7 years) completed this study. The Garmin Vivoactive 3 and Garmin Fenix 6 Pro were tested along with the Polar H10 chest strap and Cosmed K5 portable metabolic unit as the criterions for average HR and EE, respectively. Participants completed 4 circuits of 4 exercises (front squat, reverse lunge, push-ups, and shoulder press) using dumbbells at a light intensity with 1 set of 10 repetitions per exercise and 30 seconds rest between exercises and 1-1.5 min. rest between circuits. Mean absolute percent error (MAPE, ≤10%) and Lin’s Concordance (ρ≥0.7) were used to validate the device’s average HR (in bpm) and estimated EE (in kcals) compared to criterion reference devices. Dependent T-tests determined differences (p≤0.05). RESULTS: Average HR for Garmin Vivoactive 3 and Fenix 6 Pro were significantly different (p\u3c0.01) than the Polar H10 (115.0±23.9 and 124.5±15.4 vs 128.9±19.0 bpm, respectively), and were not considered valid (MAPE: 44.8% and 25.1%; Lin’s Concordance: 0.50 and 0.63, respectively). Estimated EE for Garmin Vivoactive 3 and Fenix 6 Pro were significantly different (p\u3c0.0001) than the Cosmed K5 (31.7±12.3 and 39.7±13.1 vs 20.3±5.5 kcals, respectively), and were not considered valid (MAPE: 309.7% and 322.1%; Lin’s Concordance: 0.04 and 0.15, respectively). CONCLUSION: Anyone involved in any resistance training aspect should be aware of the limitations of these wrist-worn devices in measuring average HR or EE

    Genome modeling system: A knowledge management platform for genomics

    Get PDF
    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Considering DDS in the Domain of DIS - Pros and Cons

    Get PDF
    DIS is a legacy IEEE standard for defining and structuring PDUs in large scale distributed wargames. Although the standard specifies various QoS appropriate for certain PDUs, a one-size-fits-all transport strategy is traditionally employed via UDP. Since the inception of DIS, the OMG has produced a standard for a DDS which has been implemented by several middleware vendors. DDS middleware offers an abstraction for network communications that allows applications and developers to easily employ configurable QoS by topic. Adoption and use of these QoS in DIS applications may introduce greater compliance with the IEEE standard and enrich the service features available to distributed wargames and their developers. In this thesis, current use cases of DIS and DDS are examined. The cost, network burden, and performance of DDS is measured and analyzed through experimentation and support DDS’s eligibility to promote greater compliance with the IEEE standard for DIS

    Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology

    No full text
    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo. Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication
    corecore